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Abstract

Background: Functional training is becoming the state-of-the-art therapy approach for rehabilitation of individuals
after stroke and spinal cord injury. Robot-aided treadmill training reduces personnel effort, especially when treating
severely affected patients. Improving rehabilitation robots towards more patient-cooperative behavior may further
increase the effects of robot-aided training. This pilot study aims at investigating the feasibility of applying
patient-cooperative robot-aided gait rehabilitation to stroke and incomplete spinal cord injury during a therapy
period of four weeks. Short-term effects within one training session as well as the effects of the training on walking
function are evaluated.

Methods: Two individuals with chronic incomplete spinal cord injury and two with chronic stroke trained with the
Lokomat gait rehabilitation robot which was operated in a new, patient-cooperative mode for a period of four weeks
with four training sessions of 45 min per week. At baseline, after two and after four weeks, walking function was
assessed with the ten meter walking test. Additionally, muscle activity of the major leg muscles, heart rate and the
Borg scale were measured under different walking conditions including a non-cooperative position control mode to
investigate the short-term effects of patient-cooperative versus non-cooperative robot-aided gait training.

Results: Patient-cooperative robot-aided gait training was tolerated well by all subjects and performed without
difficulties. The subjects trained more actively and with more physiological muscle activity than in a non-cooperative
position-control mode. One subject showed a significant and relevant increase of gait speed after the therapy, the
three remaining subjects did not show significant changes.

Conclusions: Patient-cooperative robot-aided gait training is feasible in clinical practice and overcomes the main
points of criticism against robot-aided gait training: It enables patients to train in an active, variable and more natural
way. The limited number of subjects in this pilot trial does not permit valid conclusions on the effect of
patient-cooperative robot-aided gait training on walking function. A large, possibly multi-center randomized
controlled clinical trial is required to shed more light on this question.

Background
Patients with motor dysfunction due to lesions of their
central nervous system (CNS) typically undergo physical
and occupational therapy for rehabilitation. In the past,
this therapy mainly consisted of stretching, bracing and
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strengthening of the affected limbs as well as training of
compensation strategies using unaffected limbs to allow
patients to become as functional and independent as pos-
sible [1]. Since research on neural plasticity has started
to stress the ability of the CNS to reorganize and relearn,
therapy approaches have emerged that focus on exploiting
this plasticity in a functionally beneficial way. A promi-
nent approach in this direction has been pioneered by the
American psychologist Edward Taub. Based on the psy-
chological concept of “learned helplessness” [2], he argued
that especially hemiplegic patients may end up in a state
of “learned non-use” of their paretic limbs if they are not
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sufficiently encouraged to use them. This (psychological)
state would then also be unfavorable in the perspective of
neural plasticity, as the CNS is not driven to reorganize
itself in support of the affected limbs. To prevent these
negative developments, Taub and his colleages designed
the technique of constraint-induced movement therapy
(CIMT), also referred to as “forced use” or “constrained-
induced therapy” [3], which has shown to be effective
in randomized controlled trials [4-6]. Furthermore, ani-
mal studies are starting to shed light on the underly-
ing physiological mechanisms of recovery induced by
CIMT [7].

Body-weight supported treadmill training
In the light of neural plasticity and basic principles of
motor learning it seems apparent that rehabilitation train-
ing should be task specific, i.e. if the aim is to relearn walk-
ing, one should practice walking. This common-sense
argument for task specificity has been demonstrated to be
valid by a large body of research, e.g. [8-12].

To perform task-specific gait training in a safe
environment, body-weight supported treadmill training
(BWSTT) has been introduced [13,14]. In this approach,
patients wear a harness and are partially relieved from
their body weight by a body-weight support system.
BWSTT has become a well-accepted task-specific therapy
to retrain gait in individuals with neurologically caused
walking impairments. While BWSTT does not appear to
be more effective than other task-specific approaches such
as overground mobility training [15,16], it causes better
results than unspecific lower extremity strength training
[17].

Robot-assisted gait training
For severely affected patients, task-specific training for
walking—be it on a treadmill or overground—puts a sub-
stantial physical burden on therapists, who not only have
to facilitate the desired movements of paretic and poten-
tially spastic limbs but also need to guarantee the safety
of their patients and prevent them from falling. Therefore,
even with the additional safety of the body-weight support
system in BWSTT, two or three therapists are needed to
train a para- or tetraplegic individual.

These limitations motivated interdisciplinary teams of
engineers and clinicians to develop technical tools that
reduce the burden of manually assisted gait training. In
the late 90s of the 20th century, the Lokomat [18,19]
and the gait trainer GT1 [20] were developed and subse-
quently commercialized.

Both devices became commercially successful and
were soon followed by others: The AutoAmbula-
tor/ReoAmbulator (Motorika) [21], and the Haptic

Walker [22], which has been commercialized as G-EO
(RehaTechnologiesa).

In addition to the commercially available gait rehabil-
itation robots, countless research prototypes have been
developed, e.g. [23-26].

Clinical research about the efficacy of robot-aided gait
training is still at an early, rather inconclusive state [27,28].
For the Lokomat, studies with stronger focus on non-
ambulatory subjects found advantages of robot-aided gait
training over manually assisted gait training [29-32], while
studies focusing on ambulatory subjects found manu-
ally assisted gait training to be more effective [33,34].
These results suggest that currently, robot-aided tread-
mill training is most effective for severely affected, non-
ambulatory patients, whereas it may not be ideal for more
advanced, ambulatory patients. This situation demon-
strates the need to improve current rehabilitation robots
in a way that extends their spectrum of effective treat-
ment to functionally more advanced patients. Such an
improvement would allow patients to benefit from robot-
aided treadmill training throughout their different stages
of recovery, up to a point where they can safely and
efficiently perform overground training.

Furthermore, the repetitive gait pattern imposed by a
position-controlled robot may not provide sufficient vari-
ability to drive the reorganization of the CNS in an opti-
mal way. Variability in the input data is required for neural
networks to improve fault-tolerance, generalization, and
learning [35]. In training theory, this observation has been
well-known for a long time, and it has been captured
nicely in the phrase coined by Bernstein that training
should be “repetition without repetition” [36].

Previous work
The first controllers for robotic devices supporting gait
training were position controllers with the aim to ensure
that the robot (and the patient) followed the desired
movement trajectory as closely as possible [18,20]. These
controllers were essentially “blind” to the actions of
patients, i.e. active movements in the desired direction
were equally prohibited as active movements in other
directions. Thus, they did not encourage patients to par-
ticipate actively in the training and reduced movement
variability to a minimum.

Efforts were then taken to introduce more compli-
ant control schemes, particularly impedance control [37].
Here, the current position of the robot is virtually coupled
to a reference position by a simulated spring and damper
assembly with adjustable stiffness and damping values.
The spring and damper action is emulated by motors,
which apply forces on the patient. With reduced spring
stiffness, patients can participate more actively and expe-
rience more movement variability [38]. However, they can
also lead to unfavorable movement patterns and become
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more and more affected by the inertia of the robots as
impedance is reduced.

The assist-as-needed (AAN) paradigm [39,40] has been
introduced to generally improve the behavior of rehabil-
itation robots. It states that a rehabilitation robot should
constantly try to reduce its support so that patients
receive just the minimum of support required to over-
come their weakness or impaired motor control. Then,
patients would not be able to “slack” and rely on the sup-
port of the robot, and the danger of “learned helplessness”
would be avoided.

Besides these general trends, there have been many
efforts to develop controllers aiming to improve robot-
aided gait rehabilitation in recent years [24,39,41-48].

One particular approach, motivated by the experiments
performed in animal experiments by Cai and colleagues
[11,49], is the patient-cooperative Path Control strategy,
which we implemented for the Lokomat gait rehabilitation
robot. The control strategy allows patients to influence the
timing of their leg movements along the spatial path of
a physiologically meaningful walking pattern. The robot
simulates compliant virtual walls, which keep the patient’s
legs within a “tunnel” around the desired spatial path [50].

We have previously investigated the immediate effects
of the Path Control strategy versus non-cooperative
robot-aided gait training on individuals with incom-
plete spinal cord injury (iSCI). Eleven individuals with
iSCI participated in a single training session with the
Lokomat. The participants trained more actively and with
larger kinematic variability while the Lokomat was con-
trolled with the patient-cooperative Path Control strategy
than during standard position-controlled robot-aided gait
training [51].

Research questions
Based on the encouraging results of the single train-
ing session with iSCI subjects, we were interested in the
feasibility and potential effects of applying the patient-
cooperative training approach over several weeks. There-
fore, we applied this kind of training in a pilot trial on a
single case basis.

The aim of this pilot trial was to answer the following
research questions:

1. Is it feasible to apply patient-cooperative robot-aided
gait training over the course of a typical
rehabilitation program of four weeks?

2. What is the short-term effect of patient-cooperative
vs. non-cooperative robot-aided gait training on
patients?

3. What is the effect of four weeks of
patient-cooperative robot-aided gait training on
walking function?

Methods
Rehabilitation device
In this study, patient-cooperative robot-aided gait train-
ing was implemented with the Lokomat gait rehabilitation
robot (Figure 1). More detailed information about the
device can be found in the related publications [18,19].
Briefly summarized, the Lokomat comprises two actuated
leg orthoses that are attached to the patient’s legs. Each
orthosis has one linear drive in the hip joint and one in
the knee joint to induce flexion and extension movements
of hip and knee in the sagittal plane. Knee and hip joint
torques can be determined from force sensors between
actuators and orthosis. Passive foot lifters can be added
to induce ankle dorsiflexion during swing phase. A body
weight support system relieves patients from a definable
amount of their body weight via a harness [52].

Robotic control strategies
The main control strategy used in this trial was Gen-
eralized Elastic Path Control as introduced in [53]. In
this approach, a “virtual tunnel” for the leg movements
is represented by a virtual force field, represented by a
mapping from the current position to the force reponse
from the virtual elastic tunnel walls. The force field was
obtained by an optimization algorithm, under the con-
straint that the field has to be conservative to ensure
controller stability. Details of the procedure are reported
in [53,54]. In earlier studies, the “virtual tunnel” had been
implemented by means of a nearest-neighbor search with
respect to a reference trajectory [50,51]. The transition
from this earlier approach to the Generalized Elastic Path

Figure 1 The Lokomat gait rehabilitation robot (Photo courtesy
of Hocoma AG).
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Control approach was made because the latter provided
better control performance with more natural movements
within the “virtual tunnel” [53,54].

We implemented three different conservative force
fields: (1) a narrow tunnel with tight coupling between the
joints, (2) a tunnel of medium width, and (3) a wide tunnel,
which provided only very loose coupling. The therapist
was able to continuously adjust the tunnel width between
these settings, causing the control algorithm to linearly
interpolate between the different force fields.

We combined the Generalized Elastic Path Control
approach with a standard impedance controller [38],
because it was easier for patients to start the training with
the reference timing provided by this strategy (Figure 2).
The stiffness of this superimposed secondary controller
was continuously adjustable between zero and the maxi-
mally achievable stiffness. The maximal stiffness will also
be referred to as 100% guidance force, and zero stiffness
as 0% guidance force. At 0% guidance force, only the vir-
tual tunnel (and optional supportive flow) rendered by the
Generalized Elastic Path Control algorithm affected the
patient.

For more advanced patients, we included the possibil-
ity to influence the treadmill speed by combining the
patient-cooperative Lokomat controller with the Auto-
matic Treadmill Speed Adaptation algorithm [55]. In this
approach, the horizontal ground reaction forces between
the patient’s feet and the treadmill are used to intuitively
control the treadmill speed during robot-aided gait train-
ing. The maximal treadmill speed for this trial was limited
to 4.0 km/h (1.1 m/s).

The body-weight support system was controlled as
described in [52], to provide a constant level of body-
weight support set by the therapist.

A similar approach as described in [50] was used for
visual feedback: An avatar representing the patient was
shown with overlaid “ghost legs” which demonstrated
the desired movements. Additionally, a second manikin,

which walked to the left of the patient avatar, was intro-
duced. Like the “ghost legs”, this second manikin showed
the desired leg movements based on the original gait tra-
jectory enclosed by the “virtual tunnel” rendered by the
Generalized Elastic Path Control, with a timing appro-
priate for the selected treadmill speed. The patient was
instructed to try to match the movements of the red
manikin (Figure 3).

During training in Automatic Treadmill Speed Adapta-
tion mode, the visual feedback was modified. The “ghost
legs” were removed from the patient avatar, and the red
manikin walked with a definable speed in the virtual
environment. The speed of the patient avatar was cou-
pled to the current treadmill speed, and the patient was
instructed to match the speed of the red manikin. By
employing a pseudo-random profile of desired speeds for
the red manikin, the therapist was able to trigger patients
to autonomously vary their walking speed.

Trial location and subjects
The trial was conducted at the spinal cord injury (SCI)
research lab of the Spinal Cord Injury Center at Bal-
grist University Hospital, Zurich, Switzerland. The study
protocol was approved by the Ethics Committee of the
Canton of Zurich, Switzerland, and all subjects gave writ-
ten informed consent prior to the experiments.

To be considered for inclusion, iSCI subjects had to
be between the age of 18 and 70 with a chronic incom-
plete spinal cord injury (time after injury greater than 12
months). Subjects had to be rated as ASIA C or D on
the American Spinal Cord Injury Association Impairment
Scale (AIS) with a motor level of lesion between C4 and
Th11 [56]. Furthermore, they had to be unable to walk
without at least moderate assistance at the time of inclu-
sion (i.e. a score of less than six in the “mobility outdoors”
item of the latest version of the Spinal Cord Independence
Measure (SCIM III) [57] was required). Cognitive capacity
to follow simple verbal instructions was necessary.

Figure 2 Control scheme of the Generalized Elastic Path Control combined with the conventional impedance control approach. The “Path
Force Field” block constitutes a conservative force field and computes the torques τ elast as a function of the actual joint angles qact [53]. The
corrective torques τ cor of the “Impedance” block simulate a viscoelastic coupling of the actual angles qact to the reference angles qref. The
“torque-controlled drives” apply the desired torques to the Lokomat orthosis (“Orthosis”). These torques are measured as τ sens. Together with the
interaction torques τ int, they move the exoskeleton and determine the actual angles qact.
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Figure 3 Visual feedback for the pilot trial. The yellow legs of the
patient avatar (figure on the right) represent the actual movements of
the Lokomat legs. The red figure on the left demonstrates the desired
leg movements. Subjects are instructed to match the movements of
the red figure as close as possible. For fine-tuning of the movements,
subjects can focus on the semi-transparent red “ghost legs” that are
overlaid to the legs of the patient avatar.

For stroke subjects, the inclusion criteria were: age
between 18 and 70 years, a hemiparesis which had per-
sisted for more than 6 months after one (but not more
than one) unilateral, supratentorial, ischemic or hemor-
rhagic stroke without bilateral, brain stem or cerebellar
lesions. The lesion had to be confirmed by radiologic find-
ings. Subjects had to be able to ambulate more than 10
m overground without assistance of a therapist at speeds
between 0.1 and 0.8 m/s, using assistive devices or braces
as needed. Stroke subjects had to have at least one key
muscle of the affected leg with values 3 or lower accord-
ing to manual muscle testing [58,59]. Cognitive capacity to
follow simple verbal instructions was necessary and was
verified with the Mini-Mental State Examination [60].

Exclusion criteria for both groups were: The subject was
not ambulating prior to stroke or SCI, or met one or more
of the standard exclusion criteria for Lokomat training
(body weight greater than 130 kg, body height greater than
2 m, leg length difference greater than 2 cm, osteoporo-
sis, instable fracture in lower extremity, restricted range of
motion, presence of decubitus ulcer of lower extremity).

Also, any of the following obstructive diseases limiting
training led to exclusion of the study: arthritis causing
pain while stepping; dyspnea or angina on moderate exer-
tion; limited walking endurance due to cardiopulmonary
or other diseases. Prevalence of other neurological or
orthopedic injuries and medical diseases which may limit
exercise participation or impair locomotion (e.g. serious
infection; severe orthostatic hypotension or uncontrolled
hypertension, congestive heart failure, pain while weight-
bearing) as well as severe metabolic diseases, epilepsy,
pre-morbid ongoing major depression or psychosis were
additional exclusion criteria. Subjects were not allowed to
participate in other training studies or perform physical
therapy interventions targeting the lower limbs during the
trial.

The iSCI subjects were recruited using the database
of the University Hospital Balgrist, Zurich, Switzerland.
Stroke subjects were recruited from the “Zentrum für
ambulante Therapie ZAR”, Zurich, Switzerland.

Six subjects (two SCI and four stroke subjects) were
recruited for the trial (Table 1). However, two subjects
dropped out of the trial after one and two weeks, respec-
tively, because of personal reasons, so that only four
subjects completed the trial.

Training protocol
The subjects trained for 45 min (actual training time)
four times a week during a period of four weeks, i.e. each
subject performed 16 training sessions in total.

The first training session focused on the subject’s setup
and adjustments within the device and was carried out
by two therapists to reduce setup time. To allow subjects
to acclimatize, training started with approximately 30%
body-weight support and a treadmill speed of 1.9 km/h.
All subjects initially started training using foot lifters
(stroke subjects only at the affected side) to ensure foot
clearance during swing phase. If control and strength of
ankle dorsiflexion improved, the tension of the foot lifters
was decreased until the point of volitional dorsiflexion was
sufficient to remove the foot lifters.

In subsequent sessions, training intensity was increased
progressively by changing walking speed, level of body-
weight support and guidance force of the robot. The
amount of BWS was adjusted individually in order for
the subjects to achieve adequate knee extension dur-
ing the stance phase and toe clearance during the swing
phase. Adjustments were made according to the following
priorities:

1. The stiffness of the impedance controller (guidance
force) was decreased as far as possible, until 0%
guidance force was reached and the subject was
training only with the Generalized Elastic Path
Control strategy.
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Table 1 Characteristics of subjects recruited for the pilot trial (AIS - ASIA impairment scale [56], WISCI II - Walking Index
for Spinal Cord Injury, version II [61,62])

Subject Age Height (cm) Weight (kg) Sex Medical diagnosis Months p. injury AIS WISCI II

P01 69 178 68 m Incomplete tetraplegia sub C4, cen-
tral cord syndrome syndrome

17 D 13

P02* 46 176 67 m Ischemic stroke A. carotis interna
left

19 n/a 18

P03 38 163 62 f Ischemic stroke A. media left 12 n/a 20

P04 45 183 80 m Ischemic stroke A. media left 8 n/a 15

P05* 48 168 65 m Hemorrhagic stroke fronto-parieto-
opercular

8 n/a 18

P06 69 178 80 m Incomplete paraplegia sub Th8,
stroke after tumor exspiration

13 D 12

*Subjects P02 and P05 dropped out of the study because of personal reasons before completing the four week training intervention.

2. The tunnel width was increased from narrow as far as
possible until the widest tunnel setting was reached.

3. Treadmill speed was increased as far as possible until
the maximal speed of 4.0 km/h was reached.

4. Body-weight support was reduced as much as
possible.

The adjustments listed above were made by the ther-
apist continuously during each session. Based on expe-
rience in manual and robot-aided gait rehabilitation, the
therapist subjectively judged gait quality and the subject’s
level of motivation to decide if the subject was likely to
tolerate a more challenging training. The goal for each
training session was to reach the highest level of chal-
lenge, i.e. a guidance force of 0%, the widest tunnel setting,
a treadmill speed of 4.0 km/h and the lowest level of
body-weight support tolerated by the patient. Adapta-
tions were always done systematically, following the order
stated above.

If subjects were too exhausted to continue, which was
judged by the therapist who subjectively assessed the
quality of their walking patterns, training intensity was
reduced by taking back the adjustments in reverse order.
When subjects needed to be distracted from exhaustion
towards the end of the 45 min of training, the visual feed-
back was changed to a coin-collecting game from the com-
mercial “Lokomat System Augmented Feedback” [63].

When subjects were able to walk with the widest tun-
nel setting, we tested whether they were able to control
the treadmill in Automatic Treadmill Speed Adaptation
mode. If this was the case, 10 to 15 min of Automatic
Treadmill Speed Adaptation were introduced in the train-
ing sessions to increase variability of the training and
active participation of the subjects.

Outcome measures and data recording
In the second training session (baseline), after two weeks
of training and in the final training session after four

weeks, we performed electromyography (EMG) of five
leg muscles (rectus femoris (RF), vastus medialis (VM),
biceps femoris (BF), tibialis anterior (TA) and gastrocne-
mius medialis (GM)) as well as heart rate measurements
under five different training conditions:

1. Walking on the treadmill with body-weight support
but without the Lokomat (FREE).

2. Walking with the Lokomat in Generalized Elastic
Path Control mode (0% guidance force), with the
maximal tunnel width (WIDE).

3. Walking with the Lokomat in Generalized Elastic
Path Control mode (0% guidance force), with the
minimal tunnel width (NARROW).

4. Walking with the Lokomat in Generalized Elastic
Path Control mode (0% guidance force), with the
minimal tunnel width and an additional supportive
flow of ksup = 5Nm (NARROW+).

5. Walking with the Lokomat in position control mode,
i.e. with the impedance controller set to 100%
guidance force (POS).

The level of body-weight support was set to one third
of the subject’s body mass under all conditions, which
proved to be sufficient for all subjects. The subjects
walked for 2 min under each condition, while signals
were recorded. After 90 s, they were questioned about
their subjective feeling of effort (perceived exertion) using
the Borg-Scale ranging from 6 to 20 [64,65]. Conditions
were applied in randomized order, and patients were not
informed about the order of the conditions.

EMG recordings were conducted according to the
SENIAM guidelines [66]. In iSCI subjects, EMG signals
were recorded from the weaker leg, which was determined
after muscle testing according to the ASIA motor score
[67]. In stroke subjects, the data was collected from the
affected paretic leg. Signals were recorded with 1000 Hz
and band-pass filtered between 30 to 300 Hz with an
additional notch filter at 50 Hz.
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The outcome measure to investigate the effects of train-
ing was the ten meter walking test (TMWT) [68], which
assesses the time needed by the subject to ambulate 10
m. Both, self-selected velocity (SSV) and fast velocity (FV)
of the subjects were determined, with the instruction to
“walk at your normal, comfortable pace” and to “walk as
fast as safely possible”, respectively. The TMWT was per-
formed once before the start of the trial and then again
after every week of training, leading to a total of five
measurements.

Data analysis
EMG data
In order to classify the quantity and quality of muscle
activity with different control strategies for the Lokomat,
we computed an EMG metric according to [69]. This
metric has been developed and validated for leg muscle
activity during walking and assesses the similarity to a pat-
tern of norm activity. To obtain patterns of norm activity
for the muscles of interest, we recorded EMG data from
16 healthy subjects walking on a treadmill without the
Lokomat (Table 2).

The recorded EMG signals were rectified and cut into
single strides triggered by the heel strike signal of the force
sensors of the treadmill. The single strides were normal-
ized in time to 1000 samples each. All strides of a subject
were then averaged. The EMG amplitudes were normal-
ized to one, by dividing the signals by the maximal signal
level recorded for each muscle. Finally, the average activ-
ity patterns of the single subjects were averaged to obtain
the patterns of norm activity for each muscle.

Table 2 Healthy subjects for obtaining EMG reference data

Subject Age Height (cm) Weight (kg) Sex

S01 24 169 66 f

S02 35 175 65 m

S03 24 178 73 f

S04 24 170 60 f

S05 23 172 66 f

S06 23 170 59 f

S07 27 171 58 f

S08 34 186 88 m

S09 19 163 49 f

S10 23 168 65 f

S11 31 185 85 m

S12 30 180 71 m

S13 25 175 65 m

S14 28 187 92 m

S15 24 183 80 m

S16 25 180 74 m

From the patterns of norm activity, binary on/off pat-
terns were extracted by assigning the value “1” (rep-
resenting “on”) to phases above a defined threshold
thresholdmuscle and to “−1” (representing “off”) for phases
below threshold (Figure 4). The value for thresholdmuscle
was set to 15% of the maximum of the averaged muscle
activity:

NormAct(S) =
{

1 EMG signal > thresholdmuscle
−1 EMG signal ≤ thresholdmuscle

(1)

Averaged EMG signals of the subjects obtained under the
different conditions mentioned above were then related to
the norm activity patterns by two heuristics, one for the
magnitude of the EMG signal, and one for the phase of
the EMG signal [69]. The values obtained by the heuris-
tics are confined to the interval [ 0, 1]. Briefly summarized,
the magnitude component yields a maximal value of 1 if
the EMG signal has maximal amplitude during the “on”
phases and zero amplitude during the “off” phases of the
norm pattern. The phase component yields a maximal
value of 1 if the EMG signal is always above threshold dur-
ing the “on” phases and always below threshold during the
“off” phases of the norm pattern. Magnitude components
and phase components for all muscles are averaged to
obtain one value which represents the similarity of over-
all muscle activity to the pattern of norm activity. Because
of the simplified rectangular shape of the norm pattern,
the amplitude component tends to yield values lower than
1 for physiological activity patterns. Based on exemplary
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Figure 4 Patterns of EMG norm activity over one gait cycle
ranging from one initial contact (0% gait cycle) to the next initial
contact (100% gait cycle). The dashed line represents the average
muscle activity recorded from healthy subjects S01–S16 during
treadmill walking. The solid line represents the discrete “on”/“off”
signal NormAct(S).



Schück et al. Journal of NeuroEngineering and Rehabilitation 2012, 9:31 Page 8 of 14
http://www.jneuroengrehab.com/content/9/1/31

data [69] and a validation experiment with a subset of
the subjects listed in Table 2, we can expect EMG metric
values of 0.7–0.8 for healthy subjects walking freely on a
treadmill.

The EMG measurements were repeated three times (at
baseline, after two weeks, and after four weeks). To obtain
one representative value for each subject under each con-
dition, we calculated the median of the EMG metric for
these three separate measurements. As we were also inter-
ested in potential trends in the EMG metric over the
course of the four weeks of training, we normalized the
muscle activity of the subjects to the maximal EMG value
of the average stride under the free walking condition
during their first (baseline) measurement session.

To compare the EMG metrics obtained under the
different conditions, we performed a Friedman test
at the 5% significance level. In subsequent post-hoc
tests, we applied the Bonferroni adjustment for multiple
comparisons [70,71].

Physical effort
We normalized the heart rate values HRduring of the sub-
jects during walking under the different Lokomat condi-
tions to their heart rate HRfree, which we recorded while
they were walking on the treadmill without the Lokomat
(condition FREE):

HRrel = Hrduring

HRfree
. (2)

As a measure of perceived physical effort, we asked sub-
jects to rate their level of exertion on the Borg scale, which
ranges from 6 to 20 [65,72], after 90 s of walking under the
respective condition.

Analogous to the EMG metric, the median value of the
three measurements (at baseline, after two weeks, and
after four weeks) was calculated for relative heart rate
HRrel and Borg scale. Statistical comparisons of the dif-
ferent conditions were performed with a Friedman test at
the 5% significance level and Bonferroni adjustment for
multiple comparisons during post-hoc tests [70,71].

TMWT
To eliminate the effect of day to day fluctuations in the
TMWT, we fit a linear model to the measured walking
speeds of each subject:

vTMWT = β0 + β1 × nweeks
4

. (3)

In this model, β0 corresponds to the initial walking
speed of a subject at baseline, while β1 reflects the increase
in walking speed after the four weeks of training in the
pilot trial. The resulting model coefficients β0 and β1 were
checked by t-tests (α = 0.05) for a significant difference to
zero.

Results
Comparison of different training modes
The EMG patterns of our subjects showed the highest
similarity to the pattern of norm activity under condition
FREE, i.e. while they were walking on the treadmill without
the Lokomat. The value of the EMG metric was signifi-
cantly lower under condition POS. There were no signifi-
cant differences between other conditions (Figure 5).

No significant differences between conditions were
identified for relative heart rate (Figure 6) and Borg scale
(Figure 7). However, for the Borg scale, a distinct trend
towards reduced perceived exertion during condition POS
compared to the other conditions was visible.

The dashed line represents the average muscle activity
recorded from healthy subjects S01–S16 during treadmill
walking. The solid line represents the discrete “on”/“off”
signal NormAct(S).

TMWT
In all iSCI subjects, the results of the TMWT fluctuated
excessively from measurement to measurement (Figure 8).

Subject P04 showed a consistent improvement in walk-
ing speed over the four weeks of training, which is also
reflected in the coefficients of the linear regression model
fit (Table 3). The modeled increase in walking velocity
during the training period was 0.16 m/s for the SSV and
0.167 m/s for the FV. The increase in SSV contributed
significantly to the linear model (p = 0.024), while the
increase in FV was distinct but just not significant
(p=0.065).

For subjects P01, P03, and P06, the modeled changes in
walking speed were small (|β1| ≤ 0.04 m/s

4 weeks ) and did not
contribute significantly to the linear model (p(β1) ≥ 0.4).

Discussion
Feasibility of patient-cooperative robot-aided gait training
The patient-cooperative robot-aided gait training with the
Generalized Elastic Path Control approach was tolerated
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Figure 5 EMG metric of subjects under different conditions.
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well by all subjects and was performed without difficulties.
One important aspect which contributed substantially to
the feasibility was the combination of the Generalized
Elastic Path Control approach with the impedance con-
trol approach. Especially during the first training sessions,
subjects started with full guidance of the impedance con-
troller, and the gradual decrease of guidance force allowed
them to slowly get used to training with more active
participation.

Despite using a fixed treadmill speed that was not
directly influenced by the subjects, the freedom of tim-
ing in swing phase made it a constant challenge to keep
the timing of walking synchronized with the virtual “ghost
legs” of the avatar shown to the subjects. All patients
quickly understood this task and mastered it with varying
success during the single training sessions, typically with
good initial performance which reduced when the level
of challenge was increased, and when subjects got more
exhausted.

In the subjective observation of the therapist, all sub-
jects became more confident in influencing their gait
pattern with the Lokomat over the four weeks of training.

Short-term reaction to patient-cooperative vs.
non-cooperative training
Our second research question aimed at identifying the
different short-term reactions of patients to different
control strategies for the Lokomat, and more specifi-
cally, to patient-cooperative vs. non-cooperative control
strategies.

Despite the limited statistical power associated with our
small number of subjects of n = 4, our results clearly
show that the non-cooperative position control mode
causes subjects to activate their leg muscles in a way
that is significantly less similar to a physiological activa-
tion pattern than when they are walking on a treadmill

without the Lokomat (Figure 5). These findings are con-
sistent with earlier studies by other groups investigating
the influence of (non-cooperative) robot-aided gait train-
ing with the Lokomat [73,74]. In contrast, muscle activ-
ity under all patient-cooperative Lokomat conditions was
more similar to the norm activation pattern than under
the non-cooperative condition.

Interestingly, the effects of the different control modes
on muscle activity are well in line with the trend vis-
ible in the results of the Borg scale rating of the per-
ceived exertion of the subjects (Figure 7). The human
motor system uses every possibility to “slack” [75], and
it seems that the additional pressure of the challeng-
ing rehabilitation training causes subjects to relieve this
pressure by relying strongly on the unconditional sup-
port of the non-cooperative position control mode. The
patient-cooperative modes (independent of tunnel width
or the presence of an additional flow of support) appear to
keep subjects sufficiently active to exhibit near-to-normal
muscle activity and perceived exertion.

These findings extend the results reported in [51], which
only had investigated the effects of patient-cooperative
robot-aided training on the quantity of muscle activity,
by showing that the patient-cooperative control modes
also improve the quality of the patterns of muscle activity.
Impedance control [38] with medium controller stiffness
did not show significantly increased levels of muscle activ-
ity in this previous investigation [51], whereas impedance
control with low controller stiffness has not been practical
with the Lokomat, as the effects of inertia cause perturba-
tions and result in a non-physiological gait pattern. As a
consequence, we focused the present investigations on the
patient-cooperative Path Control approach that improves
the transparency of the device so that natural walking with
more freedom becomes possible.

Thus, the patient-cooperative control mode investigated
in the study allows patients to train more actively and—as
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Figure 8 Results of ten meter walking test and regression model fit for each subject and for preferred, self-selected (SSV, left column) and
fast (FV, right column) walking velocity.

a consequence—with more physiological muscle activ-
ity than the established non-cooperative position control
mode. Patients are aware of their increased activity, a fact
which could contribute positively to their motivation.

Table 3 Linear regression model coefficients of results in
ten meter walking test

Subject TMWT type β0 (m/s) p(β0) β1 ( m/s
4weeks ) p(β1)

P01
SSV 0.43 0.001 -0.032 0.600

FV 0.54 0.000 -0.028 0.405

P03
SSV 0.57 0.002 0.004 0.970

FV 0.78 0.001 0.040 0.730

P04
SSV 0.69 0.000 0.160 0.024

FV 0.77 0.000 0.167 0.065

P06
SSV 0.73 0.000 -0.020 0.688

FV 0.85 0.000 -0.023 0.559

Significant model coefficients (p < 0.05) are marked in bold.

Effect of training on walking function
The last research question addressed the effect of four
weeks of patient-cooperative robot-aided gait training on
walking function. More specifically, we were interested in
changes in walking speed in the TMWT. Only one sub-
ject (P04) showed a significant change in this outcome
measure, which increased by 0.16 m/s (SSV).

In comparison to results obtained by other studies
(Table 4), this improvement distinctly exceeds the gains in
walking speed of 0.05–0.07 m/s typically achieved in four
weeks of non-cooperative Lokomat training.

Subjects P01, P03, and P06 did not significantly change
their overground walking speed, even though the ther-
apists subjectively reported that the subjects visibly
improved their gait in the Lokomat. P01 and P06 were
older than the other subjects (both 69 years old) and
did not seem to be sufficiently flexible in their behav-
ior to modify their accustomed compensatory walking
strategies for daily life. Subject P03 showed a remarkable
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Table 4 Improvements in walking speed (SSV) in clinical trials evaluating robot-aided gait training with the Lokomat

4 weeks 8 weeks

Clinical trial RT MT RT MT

Wirz et al. [76] 0.055* – 0.11 ± 0.1 –

Husemann et al. [29] 0.05 ± 0.05 0.08 ± 0.03 – –

Hornby et al. [34] 0.07 ± 0.07 0.13 ± 0.11 – –

Hidler et al. [33] 0.06 ± 0.03 0.18 ± 0.03 0.12 ± 0.03 0.25 ± 0.03

Numbers report increases in SSV in m/s with respect to baseline after 4 or 8 weeks of training. Standard deviations are listed to the right of the “±” sign. RT:
robot-aided training with the Lokomat, MT: manual training.
*The result after 4 weeks for the trial by Wirz et al. [76] is interpolated based on the reported result after 8 weeks, assuming a linear increase of walking speed over the
course of therapy.

improvement during the first two weeks of training,
but fell back during the second two weeks (Figures 8c
and 8d).

The limited number of subjects in this pilot trial does
not permit valid conclusions on the effect of patient-
cooperative robot-aided gait training on walking function.
With respect to a potential larger randomized controlled
trial, several aspects should be considered: Even though
chronic subjects are attractive for pilot trials because all
improvement can be attributed to the intervention, it is
questionable whether they constitute a meaningful pop-
ulation for assessing the realistic potential of a specific
rehabilitation intervention.

As it very likely happened in two of the subjects in
this pilot trial, improvements may just not take place
if established compensation strategies are already so
deeply engrained that an additional behavioral interven-
tion would be necessary in addition to the motor training.
Therefore, we need to start understanding why specific
patients respond to certain interventions and others don’t
in order to tailor robot-aided therapy much more to their
needs. Modeling recovery based on data from larger tri-
als as e.g. done with data from the EXCITE trial for upper
extremity stroke rehabilitation [77] may be an important
first step in this direction.

Moreover, to obtain a better understanding of the spe-
cific effects of the training of single subjects in detail,
and be ultimately able to link the success or failure
of specific interventions to the precise nature of spe-
cific deficits, data acquisition during the trials should be
extended to include more parameters such as step lengths,
detailed ground reaction forces, and ideally even trunk
movements.

Thus, larger clinical trials investigating the effects of
robot-aided therapy interventions should focus rather on
acute and subacute patient populations and tailor the
interventions to the specific needs and deficits that an
individual patient needs to overcome in order to reach the
threshold of function required for increasing the use of the
affected limb in everyday life [78].

Conclusion
Patient-cooperative, robot-aided gait training with stroke
and iSCI patients is feasible—not only for single training
sessions, as demonstrated previously [51], but also over
the course of a realistic training period of four weeks.
Patients do not only participate more actively than dur-
ing non-cooperative, position-controlled robot-aided gait
training, they also show more physiological patterns of
muscle activity in their main leg muscles.

Thus, patient-cooperative robot-aided gait training
overcomes the main points of criticism against robot-
aided gait training: It enables patients to train walking in
an active, variable and more natural way. However, the
question remains open how much more effective robot-
aided gait training may become due to these improve-
ments. One of the chronic subjects in this trial showed
very encouraging results, whereas the others were not
receptive to the therapy. In this respect, an important
topic of future rehabilitation research should be the ques-
tion what makes certain patients respond to a specific
rehabilitation intervention while others don’t.

A large, possibly multi-center randomized controlled
clinical trial is required to shed more light on this ques-
tion. In contrast to previous trials, robot-aided training
tasks should be systematically tailored to the specific
needs of the individual patients, based on e.g. compu-
tational models of patient recovery driven by data from
clinical and robot-aided assessment. Distributing the pro-
posed patient-cooperative control algorithms to a sub-
stantial fraction of the more than 300 Lokomat robots in
clinical use world-wide may provide an important basis
for such a trial.

Endnotes
ahttp://www.rehatechnologies.eu
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